
Django-members-roles Documentation

Cowhite Software Pvt Ltd

Feb 12, 2020

Contents:

1 Overview 1
1.1 Requirements . 1

2 Installation 3

3 Usage 5
3.1 What this app does ? . 5
3.2 Things to be done by the developer: . 5
3.3 How to use ? . 6
3.4 Invitation System Usage: . 6
3.5 Project Url: . 7
3.6 Url Permission: . 7
3.7 Role Permission: . 7
3.8 Role: . 7

4 Configuration 9

5 Indices and tables 11

i

ii

CHAPTER 1

Overview

django-members-roles provides a system to invite members to a group(an Organization for example), add roles to the
members of the group and then add permissions to urls based on the role of the member.

1.1 Requirements

• Python 2.7, 3.3, 3.4, 3.5

• Django >= 1.11, < 1.12

1

Django-members-roles Documentation

2 Chapter 1. Overview

CHAPTER 2

Installation

Install latest version from pypi:

pip install django-members-roles

Required settings in settings.py:

Add django_members_roles to INSTALLED_APPS
INSTALLED_APPS = [

#...
django_members_roles,
#...

]

Add to urls.py. Note that the exact namespacec of django-members-roles is mandatory:

url(r'^django_members_roles/', include(
'django_members_roles.urls', namespace='django-members-roles')),

Middleware or decorator: You can add middleware or decorator for deciding whether a user can access a page or not.
Add middleware if you want to check permissions for all urls of the project. Add decorator if you want to check
permissions only for some of the urls.

Adding middleware:

MIDDLEWARE = [
default other middlewares
....
'django_members_roles.middleware.url_permission_middleware',

]

Adding decorator:

from .decorators import has_url_permission_decorator
url(r'^$', has_url_permission_decorator(login_required(ExampleClassBasedView.as_
→˓view())),

(continues on next page)

3

Django-members-roles Documentation

(continued from previous page)

name="example-url"),

url(r'^$', has_url_permission_decorator(login_required(example_function_based_view)),
name="example-url"),

Optional settings in settings.py(more details in configuration):

DJANGO_MEMBERS_ROLES_CONFIRMATION_REQUIRED # Default is True
DJANGO_MEMBERS_ROLES_TEST_CASE_MODEL_NAME # Default is "group"
DJANGO_MEMBERS_ROLES_TEST_CASE_APP_LABEL # Default is "auth"
DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID # Default is "content_type_id"
DJANGO_MEMBERS_ROLES_QUERY_PARAM_OBJECT_ID # Default is "object_id"
DJANGO_MEMBERS_ROLES_INVITATION_METHOD # Default is "cron"

4 Chapter 2. Installation

CHAPTER 3

Usage

After doing initial setup mentioned in installation page, you need to know how to use this app.

3.1 What this app does ?

• Allows a group(an organization or a college for example) to invite members to its group.

• Members need to accept the invitation to be part of the group.

• Allows customization of access to pages in the project based on roles.

3.2 Things to be done by the developer:

• Whenever a new group(an organization for example) is created, then an admin need to be added to that group
as the first member with role ‘admin’. For doing that, you need to call the function ‘create_admin_role’ with
parameters ‘content_object’, ‘user’ after the group is created(you can do it either by overriding save method of
that group or by catching a post_save signal):

class Organization(models.Model): # Organization is a kind of group
my_field_for_user_who_created_this_org = models.ForeignKey(User)

#...some fields...

def save(self, *args, **kwargs):
new_instance = False
if self.id:

new_instance = True
super(Organization, self).save(*args, **kwargs)
if new_instance:

create_admin_role(self, self.my_field_for_user_who_created_this_org)

Or, you can do it using post_save signal:

5

Django-members-roles Documentation

from django.db.models.signals import post_save
from django.dispatch import receiver

@receiver(post_save, sender=Organization, dispatch_uid="create_admin_role_for_
→˓organization")
def create_admin_role_for_organization(sender, instance, **kwargs):

if kwargs['created']:
create_admin_role(instance, instance.my_field_for_user_who_created_this_org)

• In the group page(or whereever you want), place the link to manage staff. This is the link where we have done
all the invitation system, role adding etc. Dont forget the namespace.:

{% url 'django-members-roles:manage-members' content_type_id object_id %}

• This app adds the staff/members of the group to the model GenericMember that we have added. But if you want
to have additional fields to the members, you can add a one to one model like this:

from django_members_roles.models import GenericMember

class MyOrganizationMembership(models.Model):
generic_member = models.OneToOneField(GenericMember)
additional_field = models.TextField()

• For every url that you want to check whether the current user has the permissions, you need to send the query
parameters to that url like this:

Some link

Where the strings content_type_id and object_id can be changed by changing the
→˓settings DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID and DJANGO_MEMBERS_
→˓ROLES_QUERY_PARAM_OBJECT_ID.

For example, if you set them as "cti" and "oi" in settings

DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID = "cti"
DJANGO_MEMBERS_ROLES_QUERY_PARAM_OBJECT_ID = "oi"

then, you can send the url like

Some link

Here content_type_id is the content type id of the group(for example
→˓Organization) and object_id is the id of the instance of that Organization.

Only this way, the middleware(or the decorator) that we developed will check the
→˓current user for permissions.

3.3 How to use ?

3.4 Invitation System Usage:

After visiting the url ‘django-members-roles:manage-members’, you will have options to see the members, add new
member, see the roles and add new role. You can click “add member” to add a new member. And click “Member List”
to see the list of members. You can invite multiple people at once.

6 Chapter 3. Usage

Django-members-roles Documentation

3.5 Project Url:

Go to the admin url ‘/admin/django_members_roles/projecturl/’ and then click the button on the top right ‘update
project urls’ which will take few seconds or minutes to update the list of project urls from your project.

3.6 Url Permission:

Add a new url permission at /admin/django_members_roles/urlpermissionrequired/add/ by selecting respective project
url and necessary permissions required for that url. When checking, we will check whether the role belonging to the
currently logged in user(for that content type) has all the permissions mentioned for this url. If atleast one permission
is not present for that role of the currently logged in user(for that content type) then it will return 403 Permission
Denied. All this happens with the help of a decorator or middleware that we developed.

3.7 Role Permission:

This might be little confusing so handle with little care. This model has two fields, one is content_type and the other
is permissions. This must be added only in the admin. The developer need to decide the permissions that a group
member can add to the roles for a group. As you know, a single project will have lots of permissions for many models.
When the admin of the group is adding the permissions for a role, we should show only few options in the dropdown
rather than all. So, the developer need to decide what are the permissions that may be required for a content type(or a
group) and then add all those permissions to the content type in this role permission model.

3.8 Role:

When adding/editing a role in the interface we developed at ‘django-members-roles:manage-members’, you can add
all the permissions for that role. You can only pick some of the permissions here, not all. The list permissions in the
dropdown shown here is dependant on the permissions enabled for a content type(that we added in RolePermission
model).

3.5. Project Url: 7

Django-members-roles Documentation

8 Chapter 3. Usage

CHAPTER 4

Configuration

Optional settings in settings.py:

DJANGO_MEMBERS_ROLES_CONFIRMATION_REQUIRED

Default: True

Allowed values: True/False

If True:

A person who is invited to a group, needs to accept invitation before being a member of that
group.

If False:

A person who is invited to a group, will be a member of the group even without accepting the
invitation

DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID and DJANGO_MEMBERS_ROLES_QUERY_PARAM_OBJECT_ID

Default for DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID: content_type_id
You can give anything like abc

Default for DJANGO_MEMBERS_ROLES_QUERY_PARAM_OBJECT_ID: is “object_id” # You can
give anything like def

For every request that needs permission validation based on this app, it expects
two query parameters(Or GET parameters). One if the value based on the setting
DJANGO_MEMBERS_ROLES_QUERY_PARAM_CONTENT_TYPE_ID and the other is the
value based on the setting DJANGO_MEMBERS_ROLES_QUERY_PARAM_OBJECT_ID.

This app retrieves the content object using the above two settings and then it will see if the currently
logged in user is a member of that content object. Then, it will fetch the role from the member and check
the permissions added to that role and decides whether the current page can be viewed by the current user
or not.

DJANGO_MEMBERS_ROLES_INVITATION_METHOD

9

Django-members-roles Documentation

Default: cron

Allowed values:

celery # Preferred

cron

direct

Celery:

If the setting value is “celery” then we use celery for background tasks. That is, when someone invites
people to a content object(or simply a group like Organization) then the invitation(s) will be sent to the
people invited using celery(background process).

Cron:

We have provided a management command that you can add in cron so the invitations will be sent.

Direct:

We dont suggest this but you can use this. Direct means, the invitations to all the people invited will be
sent in the request response cycle and not in the background process. This will affect the performance of
the application. Please dont set it to “direct”.

DJANGO_MEMBERS_ROLES_TEST_CASE_MODEL_NAME and DJANGO_MEMBERS_ROLES_TEST_CASE_APP_LABEL

Note: Mostly not useful to you, so you can ignore this setting :)

Default for DJANGO_MEMBERS_ROLES_TEST_CASE_MODEL_NAME: group Default for
DJANGO_MEMBERS_ROLES_TEST_CASE_APP_LABEL: auth

When the test cases are executed, we need a content object(or a model instance) which
the tests treat as a group to add members to it. It can be any content object. And
the content type and object id belonging to the content object will be based on the
values provided for DJANGO_MEMBERS_ROLES_TEST_CASE_MODEL_NAME and
DJANGO_MEMBERS_ROLES_TEST_CASE_APP_LABEL.

10 Chapter 4. Configuration

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Overview
	Requirements

	Installation
	Usage
	What this app does ?
	Things to be done by the developer:
	How to use ?
	Invitation System Usage:
	Project Url:
	Url Permission:
	Role Permission:
	Role:

	Configuration
	Indices and tables

